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A more robust way to obtain a high-resolution multidimensional NMR spectrum from limited data sets is
described. The Filter Diagonalization Method (FDM) is used to analyze phase-modulated data and cast the
spectrum in terms of phase-sensitive Lorentzian ‘‘phase-twist’’ peaks. These spectra are then used to
obtain absorption-mode phase-sensitive spectra. In contrast to earlier implementations of multidimen-
sional FDM, the absolute phase of the data need not be known beforehand, and linear phase corrections
in each frequency dimension are possible, if they are required. Regularization is employed to improve the
conditioning of the linear algebra problems that must be solved to obtain the spectral estimate. While
regularization smoothes away noise and small peaks, a hybrid method allows the true noise floor to
be correctly represented in the final result. Line shape transformation to a Gaussian-like shape improves
the clarity of the spectra, and is achieved by a conventional Lorentzian-to-Gaussian transformation in the
time-domain, after inverse Fourier transformation of the FDM spectra. The results obtained highlight the
danger of not using proper phase-sensitive line shapes in the spectral estimate. The advantages of the
new method for the spectral estimate are the following: (i) the spectrum can be phased by conventional
means after it is obtained; (ii) there is a true and accurate noise floor; and (iii) there is some indication of
the quality of fit in each local region of the spectrum. The method is illustrated with 2D NMR data for the
first time, but is applicable to n-dimensional data without any restriction on the number of time/fre-
quency dimensions.

� 2011 Published by Elsevier Inc.
1. Introduction The Filter Diagonalization Method (FDM) [1,2] has been used to
The useful resolution of multidimensional (nD) NMR spectra de-
pends on total acquisition time, line shape quality, spectral crowd-
ing, and noise level. First, the acquisition time ATk in each of the
n time dimensions k = 1, . . . , n imposes a minimum line width in
the corresponding frequency dimension by the time–frequency
uncertainty principle in the case of a Fourier transform (FT) spec-
trum. Secondly, discerning partially overlapping peaks in a contour
plot, to analyze complex spectra and make assignments, is facili-
tated by the line shape in each dimension, a Gaussian line shape
having the distinct advantage of clean elliptical contours that guide
the eye to discern the true number of signals present. Finally, the
noise level in the data is important to assess the significance of a
possible peak, as features should exceed the noise by an acceptable
margin to be included with confidence in a peak list to be used in
subsequent distance constraints. ‘‘False positive’’ peaks can com-
promise structure calculations and can be time-consuming to
identify and rectify.
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analyze NMR data [3,4] and especially to provide an efficient way
to handle severely truncated multidimensional signals [5–9] where
the intrinsic resolving power of the high-dimensional data is high
but the achievable digital resolution is usually limiting. The goal of
FDM is to bypass the time–frequency uncertainty principle and
achieve narrower peaks and much finer frequency resolution than
the approximate limit (ATn)�1 of FT spectra. While FDM, in which
the nD frequency data is expressed as nD Lorentzian peaks, is effec-
tive as a parametric multidimensional method for extremely large
data sets, there are certainly details of the spectral construction
itself that can be improved. The parameters are obtained by the
solution of a generalized eigenvalue problem through eigenvalues
and eigenvectors that describe Lorentzian peaks. The handling of
the time-domain data this way has recently been analyzed in more
detail [10] and, while capable of improvement, is still basically
adequate. However, the follow up to obtain the spectrum itself
can certainly be improved, especially for the case of somewhat
noisy data. In such cases regularization [5] is used to improve
the conditioning of the eigenvalue problem, and this regularization
smoothes and broadens weak peaks and/or noise into the baseline,
giving a false impression of the true noise level. A solution for
better noise representation has recently been shown by a hybrid
method, in which FDM was used to pick out and enhance the stron-
ger peaks that the Lorentzian model fit well, and the FT was used to
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obtain the residual, which was added to the idealized or ersatz FDM
(EFDM) spectrum to create a so-called hybrid FDM (HFDM) spec-
trum [11]. We expand that treatment here to include multidimen-
sional, true phase-sensitive FDM spectra that can be displayed,
plotted, contoured and phased just like conventional FT spectra,
but with higher resolution in dimensions that have too few time-
domain data points. The approach here is numerically superior to
our earlier treatment of HFDM, produces reliable spectra that have
a more realistic noise floor than in our earlier work with multidi-
mensional data, and can correctly handle peaks that have indeter-
minate phase, as in HMBC [12] spectra, for example.
2. Theory

As nD FDM spectra are always a linear combination of complex-
valued nD peaks, the way to obtain a phase-sensitive absorption-
mode spectrum and to make a Lorentzian-to-Gaussian transforma-
tion differs somewhat from the approach taken in nD FT spectra.
We will clarify the key differences in the following sections. First,
practical issues related to the FDM line shapes and the kind of
time-domain data that is optimum will be covered. The new ap-
proach will be contrasted with more aggressive ways to construct
the spectrum, ways that work in some circumstances but that can
fail exactly when it is most critical to obtain better resolution, i.e.
in cases of partial overlap. Next, the question of weighting the data
to obtain more Gaussian line shapes will be covered, followed by a
practical step-by-step procedure for obtaining the nD phase-sensi-
tive hybrid spectrum. Finally, the question of how to handle the
noise that is inevitably present in the spectra will be broached.
Numerical examples show that the hybrid method can handle poor
choices of the regularization parameter, and also spectra requiring
strong linear phase corrections. Practical examples in the experi-
mental section will illustrate the typical gains in resolution for
2D spectra. For 3D and higher spectra the gains are even more
dramatic.

2.1. Multidimensional phase-sensitive FDM spectra

Two-dimensional data is the simplest case to consider. As a
parametric method, FDM attempts to characterize a 2D spectrum
as a combination of 2D peaks. The fewer the number of signal
peaks in the data, the better the performance can be. Hence, FDM
is best adapted to purely phase-modulated data sets where the sig-
nal can be written

CðP=NÞðn1s1;n2s2Þ � cðP=NÞ
n1n2

¼
XK1

k1¼1

XK2

k2¼1

dk1k2
e

2pif ðP=NÞ
k1

n1s1 e�n1s1=T
ðk1Þ
2 e2pifk2

n2s2 e�n2s2=T
ðk2Þ
2 ; ð1Þ

where dk1k2 is a complex-valued amplitude and f ðPÞk1
� �f ðNÞk1

. The
superscripts P/N refer to ‘‘positive’’ or ‘‘negative’’ type data, as
judged by the orientation of the frequency axis in F1. The algebraic
sign of the signal frequency in F1 depends on whether P-type (+), or
N-type (�) data is collected. As experimental data contains noise,
and the P- and N-data are processed in separate FDM calculations,
there need be no exact symmetry in F1 between the two FDM spec-
tra with respect to either peak positions or phases. Nevertheless,
with low noise levels the spectra show approximate symmetry.
Note that while P/N data results naturally in the case of gradient
selection [13] of coherence transfer, in the alternative case of
States-TPPI acquisition [14], the correct linear combination of cos
±i sin data sets would need to be made prior to FDM analysis. Ana-
lyzing either the cos or sin data sets themselves would require fit-
ting twice as many peaks in each and, as we have as yet found no
way to capitalize numerically on the known symmetry, would
therefore require more experimental data to achieve comparable
quality to that of pure phase-modulated data.

Simple 2DFT phase-sensitive spectra of P/N data are rare, as the
2DFT results in so-called ‘‘phase-twist’’ [15] line shapes, in which
absorption- and dispersion-mode contributions are inextricably
mixed together even when the data is correctly phased. It is diffi-
cult to discern peak positions and maxima in these complex spec-
tra. However, it is the phase-twist spectrum that is the direct result
of the FDM calculation, rather than the desired pure absorption
spectrum. Thus, it must be decided how to follow up the FDM anal-
ysis to obtain a more useful spectral presentation.

Conventional processing software combines the phase-modu-
lated P/N-data, if present, to obtain sin/cos amplitude-modulated
data, and then proceeds as in Ref. [14] to avoid phase-twist line
shapes. A parametric method like FDM, however, allows one to
simply discard the dispersion-mode contribution to each individ-
ual peak entry, and thereby obtain a kind of pseudo-absorption
spectrum from purely phase-modulated data, for example a single
N-type data set [16]. Once the dispersion-mode has been deleted,
however, it is no longer possible to phase the spectrum, either:
the real and imaginary parts of the complex amplitude, dk1k2 , could
refer either to the F1 or F2 dimension, or any linear combination of
the two dimensions, for that matter. For this reason, previous work
by our group has uniformly employed an ‘‘aggressive’’ method in
two- and higher-dimensional spectra [5–7] to artificially ‘‘phase’’
the spectrum by also taking the real part of the complex amplitude
dk1k2 ! Refdk1k2g which in effect limits the ‘‘phase’’ of each absorp-
tion-mode Lorentzian peak to positive or negative. In addition, in
the aggressive approach, we could also simply replace each absorp-
tion-mode Lorentzian peak, individually, with an absorption-mode
Gaussian peak with the same integral and full width at half-maxi-
mum, thereby achieving a perfect Lorentzian-to-Gaussian line
shape transformation independent of the actual widths of the
peaks [5–7]. The drawbacks of this aggressive approach, however,
have become apparent when overlapping peaks are characterized
by badly out-of-phase entries in the FDM line list. The artificial
phasing and line shape transformations in this case falsify the
aggressive spectral estimate, even while the actual entire Lorentz-
ian FDM phase-twist spectrum may still be an excellent fit to the
phase-twist data. Furthermore, noise is similarly ‘‘phased-up’’
and can manifest itself as ‘‘new’’ peaks springing up from the base-
line. Thus, although the aggressive approach produces pretty spec-
tra, they are also unfaithful.

A better and more conservative approach, which we present
here, is to utilize the pair of P/N data sets, process each one of these
separately, and then combine the two phase-twist data sets by
reflection in F1 [17] to obtain an absorption-mode spectrum. An
estimate of the infinite-time discrete FT spectrum of a finite two-
dimensional time-domain P-type data set can be calculated from
the FDM spectral parameters as:

S1P ðf1; f2Þ ¼ s1s2

X
k1 ;k2

dk1k2

1

1� uðPÞk1
=z1

� 1
2

 !
1

1� uk2
=z2
� 1

2

� �
: ð2Þ

Here the eigenvalues uk1 ; uk2 give the position and width of the 2D
peak in each dimension, and

z1 ¼ e2pif1s1 ; z2 ¼ e2pif2s2 : ð3Þ

For the N-type data, uðPÞk1
� uðNÞk1

� ��
. The inclusion of the (�1/2) terms

corrects for the first-point error in the two-dimensional spectrum
[18], while explicitly including si allows spectra with different spec-
tral widths to be directly compared on an absolute scale. One
should note that solving the FDM eigenvalue problem for both P-
and N-type data will make the calculation a factor of two longer
than the ‘‘aggressive’’ method, but the latter is only adequate when
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peaks are sufficiently well resolved and need no phase correction,
pre-conditions that are often unrealistic.

2.2. Lineshape transformation

The clean elliptical contours of Gaussian peaks make them pref-
erable in congested spectral regions. As we have a ‘‘peak list’’ from
the FDM eigenvalues for each spectral window, it is tempting to
take the peaks, one-by-one, and convert them from the natural
Lorentzian function of Eq. (2) to a corresponding Gaussian line
shape. Such a transformation is impossible in FT deconvolution
whenever peaks have different widths, and so it could be seen as
a distinct advantage for the FDM approach. However, for a
phase-sensitive presentation the dispersion-mode part of the
Gaussian is also needed and, even in the case of an 1D integral
FT, i.e.,

Gðf Þ ¼
Z 1

0
dke�ðt=TGÞ2 e�2ipftdt ¼ dk

ffiffiffiffi
p
p

TG

2

� �
e�p2 f 2T2

G 1� i erfiðpfTGÞf g

ð4Þ

we lack a useful numerical formula for the imaginary error func-
tion erfi(z), making the phase-sensitive Gaussian line shape time-
consuming to evaluate. A proper discrete FT, which takes into ac-
count the aliasing of peaks, is even more involved. As the peak-
by-peak substitution is not without problems, we have abandoned
it in favor of conventional Lorentzian-to-Gaussian transformation
by time-domain weighting. Rather than manipulating any of the
peaks separately, the entire spectrum is treated as a whole. In this
case the skirts of wide out-of-phase peaks, which may end up
mostly canceling each other, also cancel correctly in the resolu-
tion-enhanced spectrum. The procedure is outlined in the next
section.
(a)

(b)

(d)

(f)

(g)(c)

(e)

(h)

Fig. 1. The HFDM concept in action. (a) A portion of the FT spectrum of strychnine,
showing several multiplets, some weaker peaks, and noise. The FID was sampled
2.3. Constructing the hybrid-FDM spectrum

The HFDM spectrum can recapture the weak features that do
not appear in the EFDM spectrum obtained by the ‘‘aggressive’’
method using regularization, and additionally can restore the
appropriate noise level to the smooth EFDM baseline [11]. Here
we will discuss a two-dimensional recipe for the aforementioned
phase-sensitive HFDM approach that can straightforwardly be gen-
eralized to the n-dimensional case.

The aim of HFDM is to use the superior resolution of FDM to
capture all sharp peaks that are well above the noise, and use the
discrete FT for its unbiased noise-estimate, and to ensure weak fea-
tures are not suppressed entirely. The procedure employed adheres
to the following sequence:

(i) Create the P/N-type EFDM spectra following Eq. (2). These
phase-twist spectra have essentially no noise (although
noise may have influenced the position or amplitude of the
detected peaks) and can have a much finer frequency grid,
enhancing resolution beyond the transform-limited line
width.

(ii) Take the inverse-FT of P/N-type EFDM spectra to obtain cor-
responding calculated time signals:
long enough that there are no issues with truncation. (b) An over-regularized ersatz
FDM spectrum, showing the suppression of noise, and the differential broadening of
less intense peaks [5]. (c) The FT of the residual, from the corresponding FIDs,
(a) � (b) showing the inadequate fit, and the suppressed noise. (d) The hybrid FDM
C1P=Nðn1s1;n2s2Þ¼df1df2

XNs1

n1¼0

XNs2

n2¼0

e2pif1n1s1 e2pif2n2s2 S1P=Nðf1;f2Þ: ð5Þ
spectrum, (b) + (c). The excessive line broadening is corrected, and the proper noise
level reintroduced. Panels (e) through (g) show the same sequence, with the only
difference being that the regularization is appropriate to just remove the noise. The
residual (g) is now far smaller, and the HFDM spectrum in (h) is comparable to the
FT spectrum. This is the expected result, as the original data is not appreciably
truncated. There is some very small resolution enhancement which gives rise to the
small baseline undulations in (g) in the regions near the stronger peaks.
Here, Nsi
are the number of the spectral grid points used in

S1P=Nðf1; f2Þ, while explicitly including dfi allows spectra with differ-
ent frequency steps to be correctly compared on an absolute scale.
Also, the first point correction from Eq. (2) has to be undone to
compare the FDM fit with the original data:
eC1P=Nðn1s1;0Þ ¼ 2� C1P=Nðn1s1;0Þ;eC1P=Nð0;n2s2Þ ¼ 2� C1P=Nð0;n2s2Þ: ð6Þ
(iii) Over the time range for which there is recorded data, find
the residuals between the true P/N time-domain data and
the calculated counterparts from (ii):
dCP=Nðn1s1;n2s2Þ¼
XN1�1

n1¼0

XN2�1

n2¼0

CP=Nðn1s1;n2s2Þ� eC1P=Nðn1s1;n2s2Þ:

ð7Þ
(iv) Apply standard Lorentzian-to-Gaussian transformation to
the (longer) relatively noise-free ersatz FIDs, and an appro-
priate, but perhaps less aggressive, LG transformation to
the residual, making sure to avoid truncation of the residual.
This weighting can be interactively adjusted until a best
compromise is obtained.

(v) Sum the P/N residuals into the ersatz P/N FIDs.
(vi) FT each hybrid time signal, taking the first point correction

into account.
(vii) Flip the N-type spectrum in F1 and add it to P-type counter-

part to obtain absorption-mode line-shape [17] (Fig. 1).
(viii) Make the orthogonal linear combination to that in (vii) to

allow the phase-sensitive HFDM 2D spectrum to be phased,
if need be.

In step (vii) it is important to note that the Fourier frequency
grid points are located at �SW/2 + k SW/N, k = 0, . . . , N � 1 and so
wholesale reflection of the spectrum leads to a slight error in fre-
quency registration. Instead, all points except the first point, at
the edge of the spectral width, should be interchanged to obtain
the correct flipped N-type spectrum. In [11] the residual spectrum
for the ‘‘aggressive’’ method was obtained via an analytical discrete
FT formula using the spectral parameters themselves (see Eq. (3) in
[11]). This approach is computationally intensive because ex-
tended sinc-function line shapes must be evaluated over a fine fre-
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quency grid; and it can cause numerical instabilities in some cases,
causing us to eventually abandon it. The take-home lesson from
this work is that the spectrum, in its entirety, is the most reliable
object to manipulate; reaching into the FDM line list to alter indi-
vidual entries will sometimes produce quite misleading results.

As the FDM analysis proceeds via a number of frequency win-
dows, each of which is usually far smaller than the entire spectral
width, yet substantially larger than a typical peak width, we do not
necessarily expect to be able to accurately capture wide lines of the
order of the width of the frequency window. As such wide lines are
not truncated in the time domain, there is no point in including
them in the EFDM spectrum: they are safely deleted and relegated
to the residual part of the spectrum, along with the noise. This cull-
ing of the FDM line list also improves the performance of the algo-
rithm, by cutting down the number of peaks that need to be
computed in each frequency window calculation. Likewise, extre-
mely narrow peaks, such as may occur in a constant-time experi-
ment, or by the influence of noise on short data records, must be
broadened to at least the digital resolution of the frequency grid,
or the peak may ‘‘disappear’’ between two adjacent grid points,
neither of which is at its apex. By using an in situ analysis [19]
the estimated standard deviation of the frequency accuracy for a
typical peak can be evaluated [10], allowing a minimum line width
threshold of this magnitude to be set. This minimum line width can
be 10–100 times narrower than the transform-limited line width,
however. The larger of this in situ estimate, or twice the digital res-
olution used in making the frequency spectrum, sets the minimum
line width for the Lorentzian EFDM spectrum. Professionally-writ-
ten software would automatically perform such an analysis in
background, freeing the operator from any in-depth knowledge
of the algorithm.
2.4. Improved regularization of the generalized eigenvalue problem

A two-dimensional spectrum necessitates the solution of two
generalized eigenvalue problems, both of which may be ill-condi-
tioned because the information may be overcomplete in a long
dimension and yet also incomplete in a short one, especially when
there is degeneracy in F2. As a result, no useful 2D spectrum can be
obtained without regularizing the generalized eigenvalue prob-
lems. The naive formulation is to solve

Uð1Þ1 B1k
¼ u1k

Uð0ÞB1k

Uð1Þ2 B2k
¼ u2k

Uð0ÞB2k
ð8Þ

where UðmÞn is a matrix obtained by shifting the time-domain data by
m points in the nth dimension. The matrices in (8) are all calculated
in the Fourier basis for an n-dimensional frequency grid over a re-
stricted frequency window comprising Kwin total basis functions
[2] and rarely exceed 500 � 500. The raw data matrices for a two-
dimensional NMR spectrum could exceed 104 � 104, and are
numerically intractable. (Raw matrices in 3D and 4D NMR surpass
106 � 106.) U(0) is joint to both problems, and causes problems if
it is ill-conditioned [5], which led to a reformation of (8) as

Uð0Þ
y
Uð1Þ1 B1k

¼ u1k
Uð0Þ

y
Uð0Þ þ q2

1I
n o

B1k

Uð0Þ
y
Uð1Þ2 B2k

¼ u2k
Uð0Þ

y
Uð0Þ þ q2

2I
n o

B2k
ð9Þ

where I is the diagonal identity matrix and the regularization
parameters q2

i can be chosen to draw all those eigenvalues that refer
to peaks with maxima within the frequency window under analysis
to the interior of the unit circle, so that the fit refers only to decay-
ing exponentials. In general, the shorter a time dimension is, the
more regularization required to control the line width [10].
Here we adopt an alternative formulation that has also previ-
ously been described [20] in which a singular value decomposition
(SVD) of the matrix U(0) is performed

Uð0Þ ¼ VRWy ð10Þ

where R = diag(rn) has real, non-negative entries and the matrices
V and W are unitary. The SVD routine returns the singular values or-
dered so that r1 > r2 > , � � � , > rn. The degree of ill-conditioning of
U(0) is measured by the ratio r1/rn and, in particular, if many singu-
lar values are very small or zero then the basis is too large; but in
noisy NMR spectra the singular values rarely, if ever, show any
sharp break between large and small entries, making it difficult to
choose a smaller basis both correctly and automatically. Thus,
rather than attempting this reduction, which would also perhaps
discard some small but quite important peaks (i.e. NOEs) we typi-
cally adjust all the singular values in a conservative way, to improve
the stability of the generalized eigenvalue problem and hence the
spectrum obtained from it. In a recent analysis of ill-conditioned lin-
ear systems, the substitution

rn !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

n þ q2
q

ð11Þ

has been shown to have advantageous properties [21] in controlling
the pathology that such systems can manifest. We tried an analo-
gous substitution in (8) but were generally dissatisfied with the re-
sults. Spectra were apparently distorted somewhat, while
resolution was not as fine as with the older formulation in (9). How-
ever, a slight modification, namely

rn ! rn þ q ð12Þ

seemed to give superior performance to any of the prior regulariza-
tion methods, while still being economical, as the decomposition in
(10) can be used for both F1 and F2, with different values of q as nec-
essary. This substitution is similar in spirit to that in (9) but simpler
to implement. It thus seems that the generalized eigenvalue prob-
lem, with its pair of matrices, has different issues than the stable
inversion of a single matrix. We are still exploring the very best
way to handle these ill-conditioned equations as they manifest in
NMR spectra, and will report a more complete analysis in the future.

3. Numerical examples

Some straightforward simulated data sets serve to illustrate the
performance of the new phase-sensitive method. Deliberately mis-
adjusting the regularization parameter, by making it too large, will
result in the loss of resolution, although such a loss would not be
immediately obvious in the case of the EFDM spectrum unless
comparison with a separate FT spectrum were conducted. Fig. 1
shows how the effect of inadvertent over-regularization is amelio-
rated. The FT spectrum shows a resolved multiplet with somewhat
sparse digitization. The EFDM spectrum has been over-regularized
by an incorrect choice of q, resulting in excessive line broadening.
However, the residual spectrum shows an error between the true
data and the broadened EFDM spectrum, and adding this error to
the EFDM result largely restores the structure in the hybrid spec-
trum shown in the last trace. The ability to handle incorrectly
phased data is shown in Fig. 2 in which the first data point in t1

was omitted from the data set. For display purposes, a diagonal
grid of peaks was synthesized. In the aggressive method the P-type
data were analyzed and the real part of the amplitudes associated
with an absorption-mode 2D peak. In the phase-sensitive method,
both N- and P-type data sets analyzed, the phase-twist spectra con-
structed, and then the absorption-mode spectrum obtained. The
expected linear phase correction in F1 produces a satisfactory re-
sult, as it would in an FT spectrum with narrow-enough peaks.
By contrast, the aggressive spectrum falsifies the peak integrals,
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and shows negative peaks for the badly out-of-phase features at
the edges of the spectral width.
1H
τ τ

ϕ1

εt
1

ϕ2

τ τ

13C

G
z

Decouple

Fig. 3. The pulse sequence timing diagram for the 2D HSQC experiments. Native
carbon-13 magnetization is scrubbed by two 90� pulses (narrow filled icons) and
gradients (on the Gz stave). Open icons, with a parabolic phase profile inscribed at
bottom, are BIP [23] inversion pulses. At the end of the t1 encoding of the carbon-13
transverse magnetization is accomplished with a CLUB [22] and decoded with a
bipolar gradient. The isotope-selective CLUB unit also proved useful in aqueous
solutions [data not shown] where spurious peaks resulting from intermolecular
multiple-quantum coherence [24] are avoided. The final ‘‘barber pole’’ icon is a
broadband compensated 90� that purges anti-phase magnetization and seems to
reduce the adiabatic decoupling sidebands in F2. The phases /1 and /2 are used for
TPPI [25,26] and to subtract out the residual proton signal from the carbon-12
isotopomers, respectively. The delay � is used to ensure that the first increment has
effectively zero time evolution in t1 [22], avoiding any frequency-dependent phase
correction in F1.
4. Experimental

Two 2D 1H–13C HSQC spectra were used to test the phase-sen-
sitive hybrid spectrum. The data were acquired at 500 MHz using a
standard Varian triple resonance HCN proton observe probe with
tri-axial pulsed field gradients. The pulse sequence used was previ-
ously described in [16], with the exception that the sensitivity
enhancement period before acquisition was deleted in this case.
The timing diagram is laid out in Fig. 3. The CLUB [22] gradient
encoding step conveniently allowed us to zoom in on a chosen
spectral region in 13C by simply substituting frequency-modulated
band-selective inversion pulses into the sequence, leaving all other
parameters unchanged.

A 11.1 mg quinine sample in 800 ll CDCl3 was used as the first
test case. The data set comprised 32 � 2000 in the respective t1 and
t2 dimensions over spectral widths of 20 and 8 kHz, respectively,
resulting in acquisition times AT1 = 1.6 ms and AT2 = 250 ms. The
more demanding HSQC spectrum of strychnine provided a better
calibration of the method when there was additional spectral con-
gestion, and additionally illustrates how convergence can be accel-
erated by zooming in on a congested region once the rest of the
spectrum has stabilized. The very large 13C spectral range was
decoupled using an adiabatic decoupling scheme described in liter-
ature [27] (STUD) or in the case of more restricted bandwidth
experiments either WALTZ-16 [28] or GARP [29] as appropriate.
An effective rf, in terms of heating, of around 2 kHz on 13C,
achieved a 20 kHz adiabatic decoupling bandwidth with a 1 ms
inversion pulse, but resulted in appreciable cycling sidebands that
appeared along F2 traces in the 2D spectrum. No particular sup-
pression of these artifacts was attempted aside from a high-power
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Fig. 2. Performance of phase-sensitive FDM compared with the aggressive
approach of artificially phasing each peak. A synthetic data set, with no noise,
comprises a diagonal set of peaks. The first point in t1 has been omitted, resulting in
a large linear phase error in F1. (a) The conventional FT spectrum, showing the lack
of resolution in F1 due to a short data record, and the strong linear phase error. (b)
The EFDM spectrum using the aggressive approach, in which every ‘‘peak’’ is
artificially phased and an absorption-mode 2D peak placed in position. The phase
error gets converted into an amplitude error, and an incorrect algebraic sign at the
edges of the spectral width. (c) The phase sensitive HFDM spectrum, in which both
N- and P-type spectra are analyzed, and phase-sensitive phase-twist peaks are used.
(d) The result of (c) when a conventional linear phase correction is applied. As in the
FT case, the correct spectrum is obtained. However, the resolution is far superior
compared to that in (a).
frequency-modulated 90� 13C pulse just prior to decoupling, to
purge anti-phase magnetization from the first point of the 1H
FID. The sidebands, remaining visible above the thermal noise,
were used as a convenient test of the hybrid method’s ability to re-
cover weak signals along with noise.

The solution of Eq. (8) was conducted over a frequency window
that included the entire F1 spectral width, and a narrow frequency
window in F2 such that the number of 2D basis functions was kept
below 200 � 200 regardless of the actual number of data points.
Window calculations were then quilted together into the whole
spectrum as described previously. This ability of FDM to handle
huge data sizes that would be prohibitive to tackle in one matrix
diagonalization [1,2] is a major strength of the approach.
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Fig. 4. A comparison of (a) FT and (b) HFDM processing of a 2D HSQC spectrum of
quinine, a molecule with peaks across a large fraction of both the 1H and 13C
chemical shift range. Only 32 increments in t1 were taken, so that peak widths in F1

in the FT spectrum are of the order of 5 ppm (625 Hz). Although the natural width is
many times less than the transform-limited width, the contour plot in (a) is
relatively well-resolved in the 2D spectrum. Thus, while the resolution in (b) is far
better in F1, the qualitative information content of the two renditions is comparable.
We consider (b) to be essentially a ‘‘cosmetic’’ improvement of (a).
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apparent as a host of smaller out-of-phase peaks, noise, and some breakthrough
from other peaks at different 13C chemical shifts, as the 2D peaks are wide in F1. (b)
The regularized, but phase-sensitive EFDM spectrum. Much of the true noise has
been suppressed, and the dispersion-mode peak near 6.35 ppm is broadened by the
regularization. (c) The hybrid FDM spectrum restores the noise and weaker cycling
sidebands. The main resonance is more intense than in (a) because the 2D peak in
(c) is much narrower in F1 compared with the transform-limited line width in (a).
The disappearance of the doublet near 8.6 ppm is due to the narrower line width in
F1 as well, as these peaks arise from a different 2D resonance.
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Fig. 6. The HFDM 2D HSQC spectrum of strychnine. (a) The survey spectrum
obtained with only four t1 increments. High-resolution proton multiplets appear at
the chemical shift positions of the carbon-13 spins, and a good fit is obtained over
90% of the spectrum. But a region with several partially overlapping proton
multiplets cannot be resolved, as shown by the poor result in (b), an expanded view
of that in (a). Focusing on this region alone, by using band-selective frequency-
modulated inversion pulses in the CLUB gradient encoding step, allowed a
narrowing of the spectral width in F1 by a factor of five, and repeating the
acquisition using six increments over this region then gave the stable and reliable
result shown in (c).
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5. Results and discussion

Fig. 4 compares the 2D FT and 2D HFDM spectra of quinine
using the pulse sequence of Fig. 3. The peaks are quite well re-
solved even in the transform-limited FT spectrum. Thus, although
the HFDM spectrum has higher resolution, the information that
an experienced spectroscopist is likely to be able to extract is
roughly comparable. In this case the improvement is mostly cos-
metic rather than material. (The narrower peaks in F1 do, however,
reduce the relative adiabatic decoupling sideband intensity, be-
cause the weak sidebands remain wide in F1 as they are too weak
to contribute to the regularized FDM line list. The apparent signal-
to-noise ratio is also improved, although it is well known that this
improvement is entirely illusory because the sensitivity remains
the same and only strong-enough peaks, which are easily recog-
nized above the noise level, can be captured and narrowed.)

Fig. 5 shows a trace near 101 ppm in the 13C dimension, with
the vertical gain increased so that the noise and cycling sidebands
are apparent. The FT spectrum (a) shows the intrinsic sensitivity
and the out-of-phase sidebands, as well as some breakthrough
from large, broad peaks at different 13C chemical shifts.

However, the high-resolution spectrum is advantageous when
certain regions are well resolved while others are more crowded,
as it is far easier to see which areas could benefit from more com-
plete data acquisition, and which regions have essentially con-
verged onto a final result. Fig. 6a shows the 2D HFDM spectra of
strychnine using the pulse sequence of Fig. 3 and only four time
increments in t1, for an acquisition time of just 200 ls. Most of
the spectrum is free and clear, with a small congested region in
which there are noticeable distortions, as clearly shown in the in-
set region blown up in (b). In this local region the number of
strychnine 2D peaks exceeds the number of peaks that FDM can
use to fit the data, based on the information content of the 2D sig-
nal. This can also be confirmed by the higher residual in this region
compared to similar 2D areas elsewhere, where the fit is accurate.
However, as the rest of the spectrum is well-resolved, it is a simple
matter to ‘‘zoom in’’ on the region in question by using a pair of
identical band-selective FM refocusing pulses in the CLUB gradient
encoding step. This allows the 20 kHz spectral width to be nar-
rowed to 4 kHz and, using just six increments over this restricted
region, the full and correct proton multiplet structure is revealed,
in panel (c). A 2D FT survey spectrum of strychnine with only 10
increments in total, by contrast, shows such poor resolution in F1

that it is not apparent which, if any, of the regions actually have
peaks that are unresolved. Thus, the ability to rapidly and accu-
rately identify high-resolution regions with sparse resonances
using HFDM can aid high-throughput applications by allowing
one to focus on a few congested regions without any ambiguity
in the rest of the 2D plane. These areas may then be substituted,
if desired, for the corresponding unresolved frequency region in
the survey spectrum, to arrive at a single display containing all
the information. The incorporation of the CLUB element allows
the same pulse sequence to be used for survey or band-selective
experiments, and has proven convenient and flexible.
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6. Conclusion

Short cuts, as the aphorism reads, lead to long delays. This has
certainly been true in the construction of a proper frequency spec-
trum from the output of the FDM algorithm. The temptation to
take ‘‘peaks’’ at face value and manipulate each of them individu-
ally, changing phase and line shape to achieve a clean-looking
spectrum, was overwhelming. However, such spectra are poten-
tially quite misleading when it comes to assignment and the
extraction of information that is ultimately used to arrive at chem-
ical structure. Cosmetic enhancement of the spectrum itself should
not be the goal, which should rather be to facilitate the more rapid,
more reliable assignment and structure determination of un-
knowns. In cases where sensitivity is adequate, the HFDM spec-
trum can enhance the resolution of sharp, stronger peaks, while
still producing a spectrum in which all the original imperfections
are present, and a true noise floor prevents inadvertent contouring
of features that look like resonances but that would in fact be bur-
ied in noise in any decent spectral estimate. Using in situ analysis,
error bounds can be given, and areas of poor local fit can be se-
lected and rapidly improved by a trivial modification of the pulse
sequence. Regularization via SVD has some advantages for multidi-
mensional spectra and, as it seems to have no obvious disadvan-
tage in other regards, can be recommended for all FDM
approaches. Taken together, these features make HFDM an attrac-
tive all-purpose method to estimate many different kinds of multi-
dimensional NMR spectra, lower the burden on NMR spectrometer
time, and make best use of the new generation of high-sensitivity
NMR probes. The CLUB–HSQC sequence allows one to zoom in on
restricted spectral region, and HFDM makes it possible to identify
trouble spots rapidly and obtain extra data to ensure sufficient res-
olution while ignoring larger swaths where spectrum is essentially
already fully converged.
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